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Abstract—In the context of mobile edge computing, efficiently
deploying microservices to reduce finish time and enhance
user service quality is a challenging task. However, existing
research still has certain deficiencies in considering microservice
deployment within edge server clusters and communication link
constraints. To address this issue, we propose three microservice
deployment strategies by offering flexibility and adaptability
for various application scenarios. We initially consider two
straightforward scenarios: one with unlimited storage resources
under the bandwidth constraint, and the other with unlimited
bandwidth resources under the storage constraint. For each
of these two scenarios, we introduce a novel enhanced graph
construction method and design two optimal solutions. For
Scenario 3, which involves complex constraints on server capac-
ity, computational capability, and communication resources, we
present an optimization method based on main path partitioning
and the simulated annealing algorithm. We effectively tackle
challenges arising from server capacity, computational capability,
and communication resource limitations. Across multiple experi-
mental setups, our approach significantly improves microservice
deployment efficiency and overall performance compared to
traditional strategies.

Index Terms—microservice deployment, dependency, high-
efficient, multi-access edge computing.

I. INTRODUCTION

With the widespread adoption of mobile devices and the
continuous emergence of mobile applications, traditional cloud
computing faces a range of challenges, such as high latency,
network congestion, and extensive data transmission [20].
Multi-access edge computing, as a flexible and scalable com-
puting platform, pushes computation and data processing to
the network edge, closer to users and devices [16]. This ef-
fectively reduces the distances between data transmissions on
the network, which significantly reduces latency and improves
responsiveness. The limitations of traditional monolithic ap-
plications in terms of scalability and flexibility have led to
the emergence of microservice architecture, a lightweight and
highly flexible architectural pattern [12]. By decomposing
complex monolithic applications into small, autonomous ser-
vice units, modularity, scalability, and maintainability are im-
proved. This architecture is widely employed in constructing
distributed systems and cloud-native applications. However,
it is worth noting that effectively deploying microservices
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Fig. 1. An illustrating example.

in large distributed environments, both in the cloud and on
edge devices, still presents a range of challenges. This is
especially true when it comes to deploying microservices
with dependencies, where the complexity and diversity of the
problem exacerbate the challenge. There are two main issues:
(i) How can complex dependencies among microservices
be effectively dealt with to improve the overall efficiency?
(ii) How to balance the trade-off between processing and
transmission time for optimal deployment without overwhelm-
ing the resource constraints? Therefore, efficiently managing
complicated inter-dependencies between microservices, opti-
mizing deployment strategies, and ensuring overall system
performance and stability become crucial research topics.

In this paper, we delve into the optimization of deploy-
ment strategies for microservices with complex dependen-
cies in multi-access edge computing, thoroughly examining
the problem of dependent microservice deployment across
different scenarios. We investigate the effective deployment
of dependent microservices and aim to reduce the makespan
while enhancing the overall system performance and resource
utilization that provide more advantages and opportunities for
microservices within the context of mobile edge computing.
Our major contributions are summarized as follows:

• We investigate the microservice deployment problem



with dependencies by formulating to minimize the
makespan of multiple services under the resources (stor-
age, computing, and communication) constraints in multi-
access edge computing.

• We propose three strategies for deploying microservices
that provide flexibility and adaptability for different ap-
plication scenarios. We first consider two straightforward
scenarios: one with unlimited storage resources under the
bandwidth constraint, and the other with unlimited band-
width resources under the storage constraint. For each of
these two scenarios, we introduce a novel enhanced graph
construction method and design two optimal solutions.

• We then consider a more complicated scenario with
resource constraints on storage, computing, and commu-
nication. We devise a feasible solution by introducing an
effective embedding method based on the novel defini-
tions of the main path and the preferred server extracted
based on the topology features of the services and the
edge environment, respectively.

• We conducted extensive experiments to compare our
strategies with several baselines based on the China Tele-
com Shanghai Company dataset, which was constructed
by the geographic information of 3,233 base stations.
The results are shown from different perspectives to
provide conclusions. Extensive experiments demonstrate
that our methods yield favorable results while reducing
time complexity under different scenarios.

The remainder of this paper is organized as follows. Section
II surveys related work. Section III introduces the model
and presents the problem. Section IV explores three distinct
dependent microservice deployment strategies for different
scenarios. Section V presents the experimental results. Finally,
Section VI provides a summary of the entire paper.

II. RELATED WORK

Microservices architecture, known for its lightweight and
flexible nature, finds wide applications in building distributed
systems and cloud-native applications. To address these chal-
lenges, researchers have introduced various innovative meth-
ods and strategies. Ding et al. [1] proposed a solution to the
microservice placement problem using an improved genetic
algorithm to obtain the same throughput at a lower cost.
Tang et al. [2] proposed an adaptive dynamic deployment
optimization method to minimize resource consumption costs.
Carrusca et al. [3] proposed a solution to automatically deploy
microservices in the edge to reduce latency. Wang et al. [4]
proposed an offline algorithm to achieve optimal microservices
coordination when future system information is available,
reducing overall latency. However, these methods frequently
fail to take into account the latency problem brought on by
dependencies between microservices.

Since the popularity of microservices architecture, some
works focuses on microservice deployment with dependencies.
Menouer et al. [5] preserve internal dependencies between

microservices by defining an ordered sequence. Zhao et al. [6]
determined deployment configurations for each microservice
by considering uncertainty in requests. Niu et al. [18] pro-
posed a message queue-based chain-oriented load balancing
algorithm to minimizing response time. Guerrero et al. [7] pro-
posed a common genetic algorithm for multi-objective prob-
lems to reduce service costs, repair time, and delay overhead.
Deng et al. [8], [9] introduces a dependent function embedding
algorithm to reduce makespan by determining the optimal split
for each data stream.Pallewatta et al. [10] proposed a particle
swarm optimization based on multi-objective sets to optimize
completion time. Liao et al. [11] prioritized tasks and handled
application allocation and scheduling problems jointly in an
online manner based on priority estimation. Lv et al. [19]
proposed a graph convolution network deployment framework
based on reinforcement learning to ensure user QoS. These
efforts achieved promising results, however, they neglected
the impact of server heterogeneity on the resources in edge
environments. In this paper, we comprehensively investigate
the problem of dependent microservice deployment across
various scenarios and focus on the optimization of methods
for deploying microservices with complicated dependencies in
multi-access edge computing.

III. PROBLEM FORMULATION

A. System model

We consider a three-layer network architecture, as repre-
sented in Figure 1, which consists of the cloud data center,
edge servers, and end users. Given a substrate topology of
edge network which is modeled as a weighted undirected
graph G(V,L), where V = {vk} and L = {l(vk,vq)} represent
the sets of edge servers and links, respectively. Here, we use vk
to denote the k-th edge server, and l(vk,vq) represents the com-
munication link between servers vk and vq . The computing
capability of edge server vk is represented as c(vk), measured
in gflop/s, and the communication capacity of l(vk,vq) is
denoted by b(vk,q), measured in GB/s.Each edge server has a
storage capacity, denoted by ϕ(vk), representing the maximum
number of microservices it can accommodate. In addition,
we assume that the services required by the users have been
originally provisioned in the cloud data center [13], which is
represented by set S = {Sh}. Here, we use Sh to denote the
h-th service that consists a set of microservices Mh = {mh

i }
and directed links Eh = {ehmi→mj

}, i.e., Sh = {Mh, Eh}.
Let mh

i represent the i-th microservice of Sh, and the required
processing capability of mh

i is denoted as qmh
i

, measured in
gflops. Let ehmi→mj

represent the dependency between mh
i

and mh
j , and we use rhmi→mj

to denote the corresponding data
flow size between microservices mh

i and mh
j , representing the

weight of directed edge ehmi→mj
, measured in GB.

B. Computation and Communication Models

We use dc(m
h
i ) to represent the processing time of mi-

croservice mh
i on an edge server. The processing time reflects



the time needed for microservice execution on the edge server.
It is calculated by dividing the computation workload qmh

i

of microservice when deployed on an edge server by the
computing capability c(vk) of that server. We use x(i, k) to
indicate whether microservice mh

i is deployed on edge server
vk. If mh

i is deployed on vk, then x(i, k) = 1; otherwise,
x(i, k) = 0. The computation time is given by:

dc(m
h
i ) = x(i, k) · qmh

i
/c(vk) (1)

Here, we use dl(e
h
mi→mj

) to represent the transferring time
of two dependent microservices, where mh

i is the predecessor
of mh

j . The transferring time is given by:
dl(e

h
mi→mj

) = y(i, j) · rhmi→mj
/b(vk,vq

) (2)
We use y(i, j) to indicate whether microservice mh

i and mh
j

are deployed on the same edge server. When two dependent
microservices are deployed on different edge servers, data
needs to be transmitted through links of communication, and
y(i, j) = 1. On the contrary, if two dependent microservices
are deployed on the same edge server, y(i, j) = 0, which
means that server-to-server data transfers are seamless and
result in dl(e

h
mi→mj

) = 0.

C. Problem Formulation

In this paper, we focus on finding an efficient strategy
that minimizes the makespan of services in set S under the
constraints, which is determined by the part with the longest
completion time. We use f(mh

j ) to denote the completion
time of microservice mh

j which has a predecessor mh
i , i.e.,

mh
i → mh

j . It depends on the completion time f(mh
i ) of

the predecessor mh
i , the computation time dc(m

h
j ) of mh

j ,
and the transmission time dl(e

h
mi→mj

) for data transferred
from predecessor mh

i to mh
j . However, it is worth noting

that there may be multiple predecessor microservices in a
service with complex dependencies. Thus, the value of f(mh

j )
is determined by the path of precedence with the maximum
completion time can be calculated as:

f(mh
j ) = max∀i,j{f(mh

i ) + dc(m
h
j ) + dl(e

h
mi→mj

)}. (3)
Here, we define Th as the makespan of service Sh, which
depends on the maximum completion time of all microservices
in Sh, where

Th = max∀j,mh
j ∈Sh

{f(mh
j )}, (4)

and the makespan of services in set S is given by
T = maxSh∈S{Th}. (5)

Therefore, the problem formulation is shown as follows:

P1 : minimize∀i,j T (6)

s.t.
n∑

k=1

x(i, k) = 1, ∀i (7)

n∑
i=1

x(i, k) ≤ ϕ(vk), ∀k (8)

b(vk,vq) ≪ τ (9)

x(i, k) ∈ {0, 1}, y(i, j) ∈ {0, 1}, ∀i,∀j,∀k. (10)

P1 is the objective function that centers upon minimizing
the makespan of services, and equations (6) to (10) are the
constraints. Equation (7) signifies that each microservice can
only be allocated to a single edge server. Equation (8) states
that the number of microservices processed on an edge server
cannot exceed its storage capacity. Equation (9) represents the
constraint imposed by the communication bandwidth, where τ
is the threshold determined by the microservices and servers.
Equation (10) specifies the decision of microservice mh

i that
whether deployed on edge server vk, where x(i, k) ∈ {0, 1},
and the status that whether mh

i and mh
j co-located on edge

server vk, where y(i, j) ∈ {0, 1}.
Definition 1 (Optimal Microservice Deployment with De-

pendencies (OMDD) problem): Given the distribution of mi-
croservice S, the topology of edge network G, an OMDD
problem is how to find a strategy for microservice in S to
minimize P1 under the constraints (7)-(10).

IV. ALGORITHM DESIGN

A. enhanced graph construction
In this subsection, we consider to deal with the problem of

prioritization among multiple services. We introduce a novel
enhanced graph construction method to obtain the makespan
in equation (5) where multiple services in S are deployed
in parallel. We define the enhanced graph as Î, and the
transformation involves creating one virtual source ms and
one virtual destination md to connect all services. We suppose
that the required processing capacities of ms and md are all 0,
where qms = 0 and qmd

= 0. To be more precise, we construct
Hh = {mh

ω|mh
ω∈Mh

} as the set of starting nodes in service
Sh, and H = {Hh} represents the set of starting nodes of
all services. Then we add directed edges emx→mh

ω
connecting

between virtual source ms and all starting nodes in H of all
services ∀Sh ∈ S. Then we construct Dh = {mh

ϖ|mh
ϖ∈Mh

}
as the set of ending nodes in service Sh, and D = {Dh}
represents the set of ending nodes of all services. We add
directed edges emh

ϖ→md
connecting between all ending nodes

mϖ in D and the virtual destination md. We then give
values to the directed edges which represent the required
data flow size, where rmx→mh

ω
= 0 and rmh

ϖ→md
= 0.

As the newly added nodes and edges do not change the
dependencies and the completion time of microservices for
the services, therefore, the makespan of the enhanced graph Î
has an equivalence on the set of services S.

B. Scenario 1: OMDD with no storage constraint
We first consider one scenario on minimizing P1 with no

storage constraint, which is relaxing the value of ϕ(vk) in
equation (8), i.e., ϕvk ≥

∑|S|
h=1 |Mh| for all k and h. Thus, the

initial optimization problem has changed to become how to
balance the computing and communication resources, which
is formulated as follows.

n∑
i=1

x(i, k) ≤ ϕ(vk), ϕvk ≥
|S|∑
h=1

|Mh|, ∀k (11)



On the basis of the interaction, we propose a greedy-based
method of Algorithm 1 which proved to be optimal. We use
the enhanced graph Î, and edge network G as the input. The
output is the microservices deployment strategy X and the
makespan T. Firstly, for each server in set V , we calculate
the sum of ϕvk in lines 1 to 2. Then we calculate the total
number of microservices in lines 3 to 4. We determine whether
the total storage sumϕ can accommodate all microservices
summ in line 5. If the edge network G can accommodate all
microservices, where sumϕ ≥ summ, we sort V in descend-
ing order according to the server’s computing capability c(vk)
to find the server with the highest computing capability in line
6. Then, in lines 9 to 12, we start to deploy the microservices.
For each mi in Î, we deploy the mi on the server v0 in line
10. Based on that, update the deployment list X and calculate
the T in lines 11 to 12. Finally, the microservices deployment
strategy X and the makespan T are returned in line 13.

Theorem 1: OMDD-US is an optimal solution for solving
P1 under the constraints (7), (9)-(11).
Proof: We prove this theorem by contradiction. We assume
that the completion time for placing microservices separately
denoted as Ts is lower than that of merging them as a whole
Tt, i.e., Ts < Tt. Suppose there are two edge servers v1 and
v2, where c(v1) ≥ c(v2). We first consider the simplest case of
a chain-like microservice graph with only two microservices
mx and my . When microservices are deployed separately, mx

is located on edge server v1, and my is located on edge server
v2. Given this, the completion time Ts for separate deployment
is: Ts = qmx

/c(v1) + qmy
/c(v2) + rmx→my

/bv1,v2 . Then,
we consider the case that placing all microservices on the
same edge server v1, which has Tt = qmx/c(v1) + qmy/c(v1).
Since we suppose c(v1) ≥ c(v2), it follows that qmy

/c(v2) ≥
qmy

/c(v1). We calculate the difference between Ts and Tt,
where Ts−Tt = (qmy

/c(v2)−qmy
/c(v1)))+rmx→my

/bv1,v2 .
Due to the fact that rmx→my/bv1,v2 ≥ 0, we have Ts−Tt ≥ 0,
i.e., Ts ≥ Tt, which contradicts our assumption. Then, we
consider a more realistic case of a DAG-based microservice
graph with only complex dependencies. We assume that
there exists a path mx → my → mz with the maximum
required processing capability of services S, and the makespan
Tt = qmx/c(v1) + qmy/c(v1) + qmz/c(v1) for the case that
placing all microservices on the same edge server v1. Assume
that if these microservices are deployed separately, where
mx is deployed on the server v1, and my and mz are
deployed on the server v2. The completion time Ts will be
Ts = qmx/c(v1) + qmy/c(v2) + qmy/c(v2) + rmx→my/bv1,v2 .
Additionally, we calculate the difference between Ts and Tt,
where Ts−Tt = ((qmy

+ qmz
)/c(v2)− (qmy

+ qmz
)/c(v1))+

rmx→my
/bv1,v2

. Since we suppose c(v1) ≥ c(v2), it follows
that (qmy

+qmz
)/c(v2) ≥ (qmy

+qmz
)/c(v1). Furthermore, due

to the fact that rmx→my
/bv1,v2 ≥ 0, we are able to deduce that

Ts−Tt ≥ 0, i.e., Ts ≥ Tt, which contradicts our assumption.
Therefore, we can obtain that OMDD-US can minimize P1
under the constraints (7), (9)-(11). ■

Algorithm 1 OMDD with unlimited-storage (OMDD-US)

Require: Î, G.
Ensure: X, T.

1: for vk ← 1 to |V | do
2: sumϕ ← sumϕ + ϕvk ;
3: for mi ← 1 to Î do
4: summ ← summ + 1;
5: if sumϕ ≥ summ then
6: V ← Update with order by vk = argmax{c(vk)};
7: else
8: break
9: for each mi in Î do

10: Place microservice mi on edge server v0.
11: Update the deployment list X.
12: T← T + qmi

/c(v1)

13: Return X, T.

C. Scenario 2: OMDD with no communication constraint

In this subsection, we investigate one scenario on min-
imizing P1 with no bandwidth constraint, which removes
equation (9), i.e., b(vk,vq) ≥ τ . Thus, the initial optimization
problem has changed to become how to balance the comput-
ing and storage resources. On the basis of the interaction,
we propose a greedy-based method of Algorithm 2 which
proved to be optimal. We use the enhanced graph Î, and
edge cloud environment G as the input. The output is the
microservices deployment strategy X and the makespan T.
Firstly, we determine whether the total storage of all edge
servers can accommodate all microservices in the enhanced
graph Î same as algirhtm1 lines 1 to 4. If G can accommodate
all microservices, where sumϕ ≥ summ, we sort servers in
descending order of computing capability c(vk) in line 3, and
sort microservices in descending order of required computing
capability qmi in line 4. Then, we deploy the microservices
sequentially in lines 5 to 13. For each vk in sorted V , we start
the deployment by checking whether vk has available storage
resources in line 7. If the current remaining resources ϕvk > 0,
we place mh

i on the server vk in line 8 and update ϕvk . Based
on that, we update the deployment list X and calculate the
makespan T in lines 10 to 11. If vk has no further storage
resources, we update set V by removing vk, i.e., V = {V/vk},
and then we go back to line 5. Finally, the deployment strategy
X and the makespan T are returned in line 16.

Theorem 2: OMDD-UB is an optimal solution on solving
P1 under the constraints (7)-(8), (10).
Proof: We prove this theorem by contradiction. We assume
that deploying microservices with higher computational
requirements on a server with lower computing capability
denoted as T′, will require a shorter period of time for
completion than deploying microservices with higher
computational requirements on a server with higher
computing capability, denoted as T′′, i.e., T′ < T′′. Suppose



Algorithm 2 OMDD with unlimited-bandwidth (OMDD-UB)

Require: Î, G.
Ensure: X, T.

1: Same as Algorithm 1 in lines 1-4;
2: if sumϕ ≥ summ then
3: V ← Update with order by vk = argmax{c(vk)};
4: Î← Update with order by Î = argmax{qmi

};
5: for each mi in Î do
6: for vk ∈ V do
7: if ϕvk > 0 then
8: Place mi on edge server vk;
9: ϕvk = ϕvk − 1;

10: Update the deployment list X;
11: T += qmi

/c(vi);
12: else
13: Update V = V −vk and go back to line 5;
14: else
15: Break
16: Return X, T

there are two edge servers v1 and v2, where c(v1) < c(v2).
We consider the case of service with two microservices
mx and my , where qmy

> qmx
. When microservice with

higher requiring computational capacity on a server
with lower computing capability, mx is located on edge
server v1, and my is located on edge server v2. Given
this, the completion time T′ for separate deployment is:
T′ = qmx

/c(v1) + qmy
/c(v2) + rmx→my

/bv1,v2 . Since the
bandwidth is unlimited, communication time can be neglected.
Therefore, T′ = qmx/c(v1) + qmy/c(v2). Then, we consider
the case that placing microservices with higher requiring
computational capacity on a server with higher computing
capability, which has T′′ = qmx

/c(v2) + qmy
/c(v1). We

calculate the difference between T′ and T′′, where T′−T′′ =
(qmx/c(v1)) + (qmy/c(v2)) − (qmx/c(v2)) − (qmy/c(v1)) =
(c(v2)qmx + c(v1)qmy − c(v1)qmx − c(v2)qmy

)c(v1)c(v2) =
(c(v2) − c(v1))(qmx

− qmy
)/c(v1)c(v2). Since we suppose

c(v2) > c(v1) and qmx
> qmy

, we have T′−T′′ > 0, i.e.,
T′ > T′′, which contradicts our assumption. Therefore, we
can obtain that OMDD-UB can minimize P1 under the
constraints (7)-(8), (10). ■

D. Scenario 3: OMDD with constraints (7)-(10)

In this scenario, we investigate a more complicated scenario
with all resource constraints on storage, computation, and
communication, which is OMDD with constraints (7)-(10). In
order to reduce the complexity of the problem, we introduce a
novel definition of the main path for microservices as follows.

Definition 2 (main path): The main path pi refers to the
path with the maximum weight argmax{w(pi)} of Î.
Here, we use P = {pi} to denote the set of all simple paths
of Î, and we use pi to denote a simple path. Here, suppose a
simple path pi consists of a series of microservices denoted as

S(pi) = {m1,m2, . . . ,mn}. We treat the computation demand
qmi

of each microservice as the node weight and the data flow
size rmi→mj

between microservices as the edge weight. Thus,
for any path pi, the weight w(pi) is calculated as:

w(pi) =

n∑
i=1

qmi
+

n−1∑
i=1

rmi→mi+1
, mi ∈ S(pi). (12)

We use t(pi) to represent the completion time of path pi. The
formula to calculate t(pi) is as follows:

t(pi) = dc(1) +

n∑
j=2

(dc(j) + dl(j − 1, j)) , (13)

and the makespan T can be transformed into the maximum
value of all path completion times t(pi), where

T = max {fi(j)} ≡ max
(
t(pi)

)
. (14)

On the basis of this, we propose a preliminary deployment
strategy by introducing a main path embedding method in
Algorithm 3. We use the enhanced graph Î and edge network
G as the input. The output is the preliminary microservices
deployment strategy X0 and the makespan T0. Firstly, we
determine whether the total storage of all edge servers can
accommodate all microservices in an enhanced graph Î same
as Algorithm 1 lines 1 to 4. When the edge network G can
not accommodate all microservices where sumϕ < summ,
then break. Otherwise, we need to place these microservices
separately on different servers. In order to optimize both com-
putation and transferring time, we propose a new definition of
the preferred server as follows.

Definition 3 (preferred server): Let v◦ indicate the preferred
server of V , where v◦ = maxξ(vk){vk|vk∈V }. Here, ξ(vk) is
the priority value of vk with the sum of the computing capacity
and the maximum bandwidth that is connected in G.
Here, we define function ξ(vk) to calculate the priority value
in order to find the preferred server in lines 5 to 6, aiming to
obtain a server with better processing capacity and bandwidth,
and jointly optimize the processing time and transferring time.
For each vk in set V , we calculate the sum of computing
capability c(vk) and the maximum bandwidth connected by
vk. We choose the server with the largest ξ(vk) value as a
preferred server in line 7. We use the depth-first search to find
all simple paths of set P = {pi} in line 8. Then, we deploy
the microservices in lines 9 to 19. Lines 9 to 10 use equation
(11) to calculate the weight of each path, and then find the
main path pi. Then, we need to determine whether the v◦

storage is sufficient to accommodate all the microservices of
pi, where v◦ ≤ pi. We place all microservices on the preferred
server when the v◦ storage is sufficient in line 12. Otherwise,
we divide the path based on the maximum cut cpi

in line 14
which is defined as follows.

Definition 4 (maximum cut): Let cpi
indicate the maximum

cut of path pi in Î which constructs by |ϕv◦ | microservices
with the largest weights combination.
Here, |ϕv◦ | represents the server storage of the preferred server



Algorithm 3 OMDD based on Main Path Embedding
(OMDD-MPE)

Require: Î, G.
Ensure: X0, T0.

1: Same as Algorithm 1 in lines 1-4;
2: if sumϕ < summ then
3: break;
4: else
5: for vk ← 1 to |V | do
6: ξ(vk) = c(vk) +max{b(vk,vq)};
7: Choose the preferred server v◦;
8: Construct set P by depth-first search;
9: for pi in P do

10: Find the main path pi by Equation (12);
11: if ϕv◦ > |pi| then
12: Place pi on v◦.
13: else
14: Construct cpi

with |ϕv◦ | microservices;
15: Place cpi

on v◦;
16: Update pi = pi − cpi and go back to line 11;
17: Update the deployment list X0;
18: Update tpi

by equation (12);
19: Update T0 by equation (13);
20: Return X0, T0;

v◦. Then, we deploy the maximum cut cpi on v◦ in line 15.
We update path pi with pi = pi− cpi to continue to complete
the deployment of the remaining services and go back to line
11. After that, we update the deployment list X0, and we use
equations (13) and (14) to calculate the makespan T0 in lines
17 to 19. Finally, the microservices deployment strategy X0

and the makespan T0 are returned in line 20.
Then, we utilize the preliminary deployment solution X0

obtained from Algorithm 3 as a starting point and introduce
a novel strategy based on the improved simulated annealing
algorithm for iterative optimization. However, due to the
limitation of server storage resources, the traditional simulated
annealing algorithm might exceed the capacity constraint
when searching for neighbor solutions. To address this issue,
we have refined the algorithm to overcome this challenge.
The specific steps are presented in Algorithm 4. In line 1, we
take the preliminary deployment strategy X0 and makespan T0

obtained in Algorithm 3 as the required values of Algorithm
4, and we set the values of hyperparameters. Lines 3 to 4
randomly select the deployment positions of two microser-
vices from the current solution for exchanging and generating
an updating solution. On the basis of that, we determine an
updating makespan T̂. Lines 5 to 10 determine whether the
new solution is accepted based on the Metropolis criterion.
If the makespan of the updating strategy T̂ is lower than the
preliminary one T, we accept the updating strategy X̂ in line
6. Otherwise, calculate the probability ρ of the new strategy in

Algorithm 4 OMDD based on Improved Simulated Annealing
(OMDD-ISA)

Require: Î, G, X0, T0.
Ensure: X, T.

1: Initialize X← X0, T← T0, r, t, k ▷ r controls the
speed of cooling, t is the temperature of the system, k is
the number of iterations.

2: for i← 1 to k do
3: Exchange the deployment positions of microservices

in X and generate an updating deployment X̂;
4: Calculate makespan T̂ of X̂.
5: if T̂ < T then
6: X← X̂
7: else
8: Calculate ρ = e(T−T̂)/t

9: if ε < ρ then
10: X← X̂
11: t← t× r

12: Return X, T

line 8. After that, we use ε to represent the judging condition
for accepting ρ which is a random probability between 0 and
1, where ε ∈ [0, 1]. The new approach is acceptable if the
probability ρ is above ε. Otherwise, reserve strategy X. After
that, we cool down the t at a rate r range from [0.9,1) in
line 11. This optimization strategy enables us to progressively
modify the distribution of microservices depending on the
preliminary solution to better respond to the practical envi-
ronment and resource constraints. Through multiple iterations,
the simulated annealing algorithm progressively converges
towards improved solutions, thereby enhancing the quality and
effectiveness of the deployment strategy.

V. EXPERIMENT

A. Basic Setting

We conducted extensive experiments to validate the ef-
fectiveness of our algorithms under various scenarios. All
experiments were conducted using Python 3.7 on Windows
10 with an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz,
NVIDIA RTX5000 GPU, and 32GB memory. We utilized
a dataset obtained from China Telecom Shanghai Company
[14], containing information about 3,233 base station locations
and their corresponding user connections in June 2014. We
randomly selected subsets of locations containing 6, 20, and
50 base stations, and each base station was equipped with a
server, forming set V . We set the required processing capaci-
ties and internal data flows for microservices. In addition, we
have made modifications to the edge network in accordance
with various scenarios.

1) Scenario 1: We set computing capacities of edge servers
to range from [5, 20] gflops, and storage resources range from
[120, 150] units. We set the inter-server bandwidth to range
from [20, 80] GB/s. Additionally, the required computing
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Fig. 4. 50 servers and 120 microservices.

capacities of microservices range from [1, 3] gflops, and the
inter-microservice data flow sizes range from [1, 80] GB/s.

2) Scenario 2: We set computing capacities of servers to
range from [5, 20] gflops, and storage resources range from
[1, 5] units. We set the inter-server bandwidth to range from
[100, 500] GB/s. The setting of required computing capacities
for microservices is the same as scenario 1, and the inter-
microservice data flow sizes are changed to [0.1, 0.2] GB/s.

3) Scenario 3: We set storage resources range from
[1, 5] units. In addition, the computing capacities, inter-server
bandwidth ranges, required computing capacities, and inter-
microservice data flow size ranges are similar to scenario 1.

For scenarios 1 and 2, we have already demonstrated that
OMDD-US and OMDD-UB are optimal in Section IV. For
scenario 3, we introduced four baselines (OMDD-US, OMDD-
UB, Simulated Annealing-only, Q-Learning) in comparison
with our proposed OMDD-ISA algorithm:

• Simulated Annealing-only (SA): Traditional annealing
algorithm, generating random initial values.

• Q-Learning (QL): States are composed of the allocation
status of a series of services. Each service can be assigned
to different servers or remain unassigned, and the action
space contains

∑|S|
h=1 |Mh| ∗ |V | actions.

B. Experiment Results
We evaluated different algorithms in various scenarios to

compare their performance on microservices applications of

different scales and scenarios. The experimental results in-
dicate that in Scenario 1, as shown in Figures 2(b), 3(b),
and 4(b), the OMDD-US method consistently minimizes the
makespan. Notably, the makespan of OMDD-UB is consis-
tently the same as OMDD-US because both methods greedily
place microservices on high-computing-capacity servers. The
difference is that OMDD-UB sorts microservices based on
qmh

i
before placement, making it more complex in large-

scale scenarios. Meanwhile, OMDD-MPE and OMDD-ISA
perform relatively modestly in Scenario 1, with slightly
higher makespans compared to other methods. This is because
OMDD-MPE takes into account both computation and com-
munication resources. In Scenario 1, where storage resources
are unrestricted, placing all services on a single server does
not generate communication time, making communication
resources less critical. Furthermore, the SA method exhibits
relatively poorer performance in Scenario 1 due to its tendency
to get trapped in local optimal when storage resources are
unlimited and the problem scale is substantial. Finally, the QL
method shows relatively higher makespans across all problem
scales in Scenario 1. This is attributed to the complexity of
its state space, resulting in longer computation times and the
inability to find the optimal solution within limited iterations.

In Scenario 2, as depicted in Figures 2(c), 3(c), and 4(c),
the OMDD-UB method excels with the lowest makespan. The
OMDD-US method performs relatively well in Scenario 2,



though with a slightly higher makespan than OMDD-UB.
This is due to OMDD-US not fully utilizing the computa-
tion capacity of edge servers. Some microservices requiring
lesser computing resources are deployed on powerful servers,
leading to resource wastage and higher time. OMDD-MPE
performs less favorably in Scenario 2 due to its consideration
of both computation and communication resources, where
communication resources are not the primary bottleneck. The
SA and QL methods demonstrate moderate performance in
Scenario 2, with relatively high makespans across different
problem scales, possibly due to their stochastic nature caus-
ing significant fluctuations. In Scenario 2, OMDD-ISA runs
effectively with a lower makespan. The main reason it falls
short of OMDD-UB is due to its stochastic character, which
could make it impossible to find the optimal solutions.

In Scenario 3, as shown in Figures 2(d), 3(d), and 4(d),
we observe that OMDD-ISA consistently achieves a lower
makespan across all scenarios, showcasing the significant
optimization achieved by introducing the simulated anneal-
ing algorithm. Comparing the algorithm performance across
different scenarios, we observe the following trends: in small-
scale environments, the difference between SA and OMDD-
ISA is not significant, primarily because of fewer placement
strategies available at smaller scales, leading to reasonable
solutions for both methods. In larger-scale environments, the
SA algorithm’s performance diminishes, possibly due to the
randomness of the initial solution leading to local optimal.
Additionally, QL solutions exhibit fluctuation, with deterio-
rating effects as the scale increases. This is attributed to the
vast state space in QL in large-scale environments, making
it difficult to find global optima within limited iterations. In
conclusion, the experimental results effectively demonstrate
the effectiveness and superiority of the proposed algorithms
in various scenarios.

VI. CONCLUSION
This paper focuses on addressing the microservice deploy-

ment with dependencies in a resource-constrained mobile edge
computing environment. We explore how to optimize the
deployment of microservices in various application scenarios.
We initially consider two straightforward scenarios: one with
unlimited storage resources under the bandwidth constraint,
and the other with unlimited bandwidth resources under the
storage constraint. For each of these two scenarios, we intro-
duce a novel enhanced graph construction method and design
two optimal solutions. For Scenario 3, which involves complex
constraints on server capacity, computational capability, and
communication resources, we present an optimization method
based on main path partitioning and the simulated anneal-
ing algorithm. By flexibly exploring the solution space, we
incrementally optimize microservices deployment to adapt to
real-world environments and resource constraints. Across mul-
tiple experimental results, our approach significantly improves
microservice deployment efficiency and overall performance
compared to baseline strategies.
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